Agentic AI Sample Projects Portfolio
- Codersarts
- 2 days ago
- 6 min read
Explore real-world Agentic AI project blueprints with code samples, system architecture, and deployment insights. Ideal for startups, enterprises, and academic use cases.
Project 1: Autonomous Research Assistant
Overview
A multi-agent system that conducts comprehensive research on any topic by automatically searching, analyzing, and synthesizing information from multiple sources.
Key Features
# Core Capabilities
- Automatic query decomposition and refinement
- Multi-source web scraping and API integration
- Fact verification across sources
- Automatic citation generation
- Research report creation with executive summaries
Technical Stack
Framework: LangChain + CrewAI
LLM: GPT-4 / Claude API
Tools: SerperAPI, ArXiv API, PubMed API, Wikipedia API
Memory: Pinecone Vector Database
Deployment: Docker + FastAPI
Sample Code Structure
class ResearchAgent:
def __init__(self):
self.planner = PlanningAgent()
self.searcher = SearchAgent()
self.analyzer = AnalysisAgent()
self.writer = WritingAgent()
self.critic = QualityControlAgent()
async def conduct_research(self, topic: str, depth: str = "comprehensive"):
# 1. Decompose research question
research_plan = await self.planner.create_plan(topic)
# 2. Gather information
sources = await self.searcher.find_sources(research_plan)
# 3. Analyze and synthesize
insights = await self.analyzer.extract_insights(sources)
# 4. Generate report
report = await self.writer.create_report(insights)
# 5. Quality check and refine
final_report = await self.critic.review_and_improve(report)
return final_report
Output Example
📊 Structured research report with sections
🔍 Source credibility scores
📈 Data visualizations
🎯 Key findings and recommendations
📚 Full bibliography with citations
Project 2: Multi-Agent Customer Support System
Overview
An intelligent customer service system with specialized agents for different query types, automatic escalation, and sentiment-based routing.
Architecture
graph TD
A[Customer Query] --> B[Router Agent]
B --> C[Technical Support Agent]
B --> D[Billing Agent]
B --> E[Product Info Agent]
C --> F[Escalation Agent]
D --> F
E --> F
F --> G[Human Supervisor]
Implementation Highlights
class CustomerSupportSystem:
def __init__(self):
self.agents = {
'router': RouterAgent(),
'technical': TechnicalSupportAgent(),
'billing': BillingAgent(),
'product': ProductInfoAgent(),
'escalation': EscalationAgent()
}
self.memory = ConversationMemory()
self.sentiment_analyzer = SentimentAnalyzer()
async def handle_query(self, query: str, customer_id: str):
# Load customer history
context = self.memory.get_context(customer_id)
# Analyze sentiment
sentiment = self.sentiment_analyzer.analyze(query)
# Route to appropriate agent
assigned_agent = self.agents['router'].route(query, sentiment)
# Generate response
response = await assigned_agent.respond(query, context)
# Check if escalation needed
if response.needs_escalation:
response = await self.agents['escalation'].handle(
query, response, context
)
# Save interaction
self.memory.save_interaction(customer_id, query, response)
return response
Features
🎯 Intent classification and routing
💬 Context-aware responses
😊 Sentiment analysis and empathy
📈 Automatic escalation logic
🔄 Continuous learning from feedback
📊 Performance analytics dashboard
Project 3: AI-Powered Project Manager
Overview
An autonomous agent that manages software development projects by creating tasks, assigning priorities, tracking progress, and coordinating team activities.
Core Components
class ProjectManagerAgent:
"""
Autonomous project management system with multiple specialized sub-agents
"""
def __init__(self):
self.task_planner = TaskPlanningAgent()
self.resource_allocator = ResourceAllocationAgent()
self.progress_tracker = ProgressTrackingAgent()
self.risk_analyzer = RiskAnalysisAgent()
self.communicator = TeamCommunicationAgent()
async def manage_project(self, project_requirements: dict):
# 1. Break down project into tasks
tasks = await self.task_planner.decompose_project(project_requirements)
# 2. Estimate effort and dependencies
task_graph = await self.task_planner.create_dependency_graph(tasks)
# 3. Allocate resources
assignments = await self.resource_allocator.assign_tasks(
task_graph,
self.get_team_availability()
)
# 4. Create timeline
schedule = await self.create_gantt_chart(assignments)
# 5. Monitor and adjust
await self.continuous_monitoring(schedule)
Deliverables
📋 Automated task breakdown (WBS)
👥 Intelligent resource allocation
📅 Dynamic Gantt charts
🚨 Risk assessment reports
📧 Automated status updates
🔄 Sprint planning assistance
Project 4: Code Review & Refactoring Agent
Overview
An intelligent code analysis system that reviews code, suggests improvements, identifies bugs, and can automatically refactor code following best practices.
Sample Implementation
class CodeReviewAgent:
def __init__(self):
self.static_analyzer = StaticCodeAnalyzer()
self.pattern_detector = PatternDetector()
self.refactorer = RefactoringAgent()
self.test_generator = TestGeneratorAgent()
async def review_code(self, code: str, language: str):
review_result = {
'issues': [],
'suggestions': [],
'refactored_code': None,
'test_cases': []
}
# 1. Static analysis
issues = self.static_analyzer.find_issues(code, language)
review_result['issues'] = issues
# 2. Pattern detection (code smells, anti-patterns)
patterns = self.pattern_detector.detect(code)
# 3. Generate improvement suggestions
suggestions = await self.generate_suggestions(patterns)
review_result['suggestions'] = suggestions
# 4. Auto-refactor if requested
if self.should_refactor(issues, patterns):
refactored = await self.refactorer.refactor(code, suggestions)
review_result['refactored_code'] = refactored
# 5. Generate test cases
tests = await self.test_generator.create_tests(code)
review_result['test_cases'] = tests
return review_result
Features
🐛 Bug detection and security vulnerability scanning
🎨 Code style and formatting suggestions
♻️ Automatic refactoring capabilities
🧪 Test case generation
📊 Code quality metrics
💡 Best practice recommendations
Project 5: Financial Analysis & Trading Agent
Overview
An autonomous trading system that analyzes market data, news sentiment, and technical indicators to make informed trading decisions.
Architecture
class TradingAgent:
def __init__(self, config: TradingConfig):
self.market_analyzer = MarketAnalysisAgent()
self.news_monitor = NewssentimentAgent()
self.technical_analyst = TechnicalAnalysisAgent()
self.risk_manager = RiskManagementAgent()
self.executor = TradeExecutionAgent()
self.portfolio_manager = PortfolioAgent()
async def analyze_and_trade(self):
while self.is_market_open():
# 1. Gather market data
market_data = await self.market_analyzer.get_current_data()
# 2. Analyze news sentiment
news_sentiment = await self.news_monitor.analyze_latest()
# 3. Technical analysis
signals = await self.technical_analyst.generate_signals(market_data)
# 4. Risk assessment
risk_score = self.risk_manager.evaluate_position(
signals,
self.portfolio_manager.get_current_positions()
)
# 5. Make decision
decision = await self.make_trading_decision(
signals, news_sentiment, risk_score
)
# 6. Execute if appropriate
if decision.should_trade:
await self.executor.place_order(decision)
Capabilities
📈 Real-time market data analysis
📰 News sentiment analysis
📊 Technical indicator calculation
⚖️ Risk management and position sizing
🔄 Automated order execution
📑 Performance reporting
🔍 Project 6: Intelligent Document Processing Pipeline
Overview
An agent system that automatically processes various document types, extracts information, validates data, and populates databases or generates reports.
Implementation
class DocumentProcessingPipeline:
def __init__(self):
self.classifier = DocumentClassifier()
self.ocr_agent = OCRAgent()
self.extractor = InformationExtractor()
self.validator = DataValidator()
self.transformer = DataTransformer()
self.storage = StorageAgent()
async def process_document(self, document_path: str):
# 1. Classify document type
doc_type = await self.classifier.classify(document_path)
# 2. Extract text (OCR if needed)
raw_text = await self.ocr_agent.extract_text(document_path)
# 3. Extract structured information
extracted_data = await self.extractor.extract(
raw_text,
doc_type,
self.get_extraction_schema(doc_type)
)
# 4. Validate extracted data
validated_data = await self.validator.validate(
extracted_data,
self.get_validation_rules(doc_type)
)
# 5. Transform to target format
transformed_data = self.transformer.transform(
validated_data,
target_format='database'
)
# 6. Store or output
result = await self.storage.save(transformed_data)
return {
'status': 'success',
'document_type': doc_type,
'extracted_fields': len(extracted_data),
'storage_location': result.location
}
Features
📄 Multi-format support (PDF, Images, Word, Excel)
🔤 OCR with error correction
🎯 Named entity recognition
✅ Data validation and quality checks
🔄 Format transformation
💾 Automatic database population
🎮 Project 7: Game-Playing AI Agent (Chess/Go/Poker)
Overview
An advanced game-playing agent using Monte Carlo Tree Search, neural networks, and reinforcement learning.
Core Algorithm
class GamePlayingAgent:
def __init__(self, game_type: str):
self.game = GameEnvironment(game_type)
self.mcts = MonteCarloTreeSearch()
self.evaluator = NeuralNetworkEvaluator()
self.opening_book = OpeningDatabase()
self.endgame_tables = EndgameTablebase()
async def make_move(self, game_state: GameState):
# 1. Check opening book
if self.is_opening(game_state):
return self.opening_book.get_move(game_state)
# 2. Check endgame database
if self.is_endgame(game_state):
return self.endgame_tables.get_best_move(game_state)
# 3. Use MCTS with neural network evaluation
root = MCTSNode(game_state)
for _ in range(self.num_simulations):
node = root
# Selection
while node.is_fully_expanded() and not node.is_terminal():
node = node.select_child(self.uct_constant)
# Expansion
if not node.is_terminal():
node = node.expand()
# Evaluation
value = await self.evaluator.evaluate(node.state)
# Backpropagation
node.backpropagate(value)
return root.get_best_move()
🏥 Project 8: Medical Diagnosis Assistant
Overview
An AI system that assists in medical diagnosis by analyzing symptoms, medical history, and test results.
Implementation
class MedicalDiagnosisAgent:
def __init__(self):
self.symptom_analyzer = SymptomAnalyzer()
self.medical_kb = MedicalKnowledgeBase()
self.differential_diagnosis = DifferentialDiagnosisEngine()
self.test_recommender = TestRecommendationAgent()
self.risk_assessor = RiskAssessmentAgent()
async def diagnose(self, patient_data: dict):
# 1. Analyze symptoms
symptoms = self.symptom_analyzer.parse(patient_data['symptoms'])
# 2. Generate differential diagnosis
possible_conditions = await self.differential_diagnosis.generate(
symptoms,
patient_data['history'],
patient_data['demographics']
)
# 3. Rank by probability
ranked_conditions = self.rank_conditions(possible_conditions)
# 4. Recommend tests
recommended_tests = await self.test_recommender.suggest(
ranked_conditions,
patient_data
)
# 5. Risk assessment
risk_factors = self.risk_assessor.evaluate(patient_data)
return {
'differential_diagnosis': ranked_conditions[:5],
'recommended_tests': recommended_tests,
'risk_factors': risk_factors,
'disclaimer': 'For educational purposes only. Consult healthcare provider.'
}
🚗 Project 9: Autonomous Vehicle Decision System
Overview
A multi-agent system for autonomous vehicle decision-making, including perception, planning, and control.
Architecture
class AutonomousVehicleAgent:
def __init__(self):
self.perception = PerceptionAgent()
self.localization = LocalizationAgent()
self.path_planner = PathPlanningAgent()
self.behavior_planner = BehaviorPlanningAgent()
self.controller = VehicleControlAgent()
self.safety_monitor = SafetyMonitorAgent()
async def drive(self, sensor_data: SensorData):
# 1. Perceive environment
scene = await self.perception.process(sensor_data)
# 2. Localize vehicle
position = self.localization.update(sensor_data.gps, scene)
# 3. Plan behavior (lane change, stop, etc.)
behavior = await self.behavior_planner.decide(scene, position)
# 4. Plan path
trajectory = await self.path_planner.plan(
position,
behavior.target,
scene.obstacles
)
# 5. Generate control commands
controls = self.controller.compute(trajectory, position)
# 6. Safety check
safe_controls = self.safety_monitor.verify(controls, scene)
return safe_controls
📝 Project 10: Content Creation & SEO Optimization Agent
Overview
An AI system that generates high-quality content and optimizes it for search engines.
Implementation
class ContentCreationAgent:
def __init__(self):
self.topic_researcher = TopicResearchAgent()
self.content_planner = ContentPlanningAgent()
self.writer = WritingAgent()
self.seo_optimizer = SEOOptimizationAgent()
self.image_generator = ImageGenerationAgent()
self.fact_checker = FactCheckingAgent()
async def create_article(self, topic: str, keywords: list):
# 1. Research topic
research = await self.topic_researcher.research(topic)
# 2. Plan content structure
outline = await self.content_planner.create_outline(
topic,
research,
target_word_count=2000
)
# 3. Generate content
draft = await self.writer.write(outline, research)
# 4. SEO optimization
optimized = await self.seo_optimizer.optimize(
draft,
keywords,
{
'keyword_density': 0.02,
'readability_score': 60,
'meta_description': True,
'headers': True
}
)
# 5. Fact checking
verified = await self.fact_checker.verify(optimized)
# 6. Generate images
images = await self.image_generator.create_images(
optimized,
style='blog_post'
)
return {
'content': verified,
'images': images,
'seo_score': self.seo_optimizer.score(verified),
'readability': self.calculate_readability(verified)
}
How Codersarts Can Help You Build These Projects
Our Expertise Includes:
Complete Implementation - Full code with documentation
Custom Modifications - Adapt projects to your requirements
Deployment Support - Help with hosting and scaling
Testing & Debugging - Comprehensive test suites
Performance Optimization - Make agents faster and efficient
Integration Assistance - Connect with existing systems
Technology Stack We Cover:
Frameworks: LangChain, AutoGPT, CrewAI, AutoGen, BabyAGI
LLMs: OpenAI GPT-4, Claude, Gemini, Llama, Mistral
Vector DBs: Pinecone, Weaviate, Chroma, Qdrant
Deployment: Docker, Kubernetes, AWS, GCP, Azure
APIs: REST, GraphQL, WebSocket, gRPC
📞 Get Your Project Started Today!
Email: contact@codersarts.com
Website: www.codersarts.com
Response Time: Within 1 hour
These sample projects demonstrate the breadth and depth of Agentic AI applications. Each can be customized for academic assignments or production deployments. Contact Codersarts for implementation support!
Comments