top of page

Agentic AI Sample Projects Portfolio

Explore real-world Agentic AI project blueprints with code samples, system architecture, and deployment insights. Ideal for startups, enterprises, and academic use cases.



Project 1: Autonomous Research Assistant


Overview

A multi-agent system that conducts comprehensive research on any topic by automatically searching, analyzing, and synthesizing information from multiple sources.


Key Features



# Core Capabilities
- Automatic query decomposition and refinement
- Multi-source web scraping and API integration
- Fact verification across sources
- Automatic citation generation
- Research report creation with executive summaries



Technical Stack

  • Framework: LangChain + CrewAI

  • LLM: GPT-4 / Claude API

  • Tools: SerperAPI, ArXiv API, PubMed API, Wikipedia API

  • Memory: Pinecone Vector Database

  • Deployment: Docker + FastAPI



Sample Code Structure



class ResearchAgent:
    def __init__(self):
        self.planner = PlanningAgent()
        self.searcher = SearchAgent()
        self.analyzer = AnalysisAgent()
        self.writer = WritingAgent()
        self.critic = QualityControlAgent()
    
    async def conduct_research(self, topic: str, depth: str = "comprehensive"):
        # 1. Decompose research question
        research_plan = await self.planner.create_plan(topic)
        
        # 2. Gather information
        sources = await self.searcher.find_sources(research_plan)
        
        # 3. Analyze and synthesize
        insights = await self.analyzer.extract_insights(sources)
        
        # 4. Generate report
        report = await self.writer.create_report(insights)
        
        # 5. Quality check and refine
        final_report = await self.critic.review_and_improve(report)
        
        return final_report




Output Example

  • 📊 Structured research report with sections

  • 🔍 Source credibility scores

  • 📈 Data visualizations

  • 🎯 Key findings and recommendations

  • 📚 Full bibliography with citations




Project 2: Multi-Agent Customer Support System


Overview

An intelligent customer service system with specialized agents for different query types, automatic escalation, and sentiment-based routing.


Architecture


graph TD
    A[Customer Query] --> B[Router Agent]
    B --> C[Technical Support Agent]
    B --> D[Billing Agent]
    B --> E[Product Info Agent]
    C --> F[Escalation Agent]
    D --> F
    E --> F
    F --> G[Human Supervisor]



Implementation Highlights



class CustomerSupportSystem:
    def __init__(self):
        self.agents = {
            'router': RouterAgent(),
            'technical': TechnicalSupportAgent(),
            'billing': BillingAgent(),
            'product': ProductInfoAgent(),
            'escalation': EscalationAgent()
        }
        self.memory = ConversationMemory()
        self.sentiment_analyzer = SentimentAnalyzer()
    
    async def handle_query(self, query: str, customer_id: str):
        # Load customer history
        context = self.memory.get_context(customer_id)
        
        # Analyze sentiment
        sentiment = self.sentiment_analyzer.analyze(query)
        
        # Route to appropriate agent
        assigned_agent = self.agents['router'].route(query, sentiment)
        
        # Generate response
        response = await assigned_agent.respond(query, context)
        
        # Check if escalation needed
        if response.needs_escalation:
            response = await self.agents['escalation'].handle(
                query, response, context
            )
        
        # Save interaction
        self.memory.save_interaction(customer_id, query, response)
        
        return response




Features

  • 🎯 Intent classification and routing

  • 💬 Context-aware responses

  • 😊 Sentiment analysis and empathy

  • 📈 Automatic escalation logic

  • 🔄 Continuous learning from feedback

  • 📊 Performance analytics dashboard




Project 3: AI-Powered Project Manager


Overview

An autonomous agent that manages software development projects by creating tasks, assigning priorities, tracking progress, and coordinating team activities.


Core Components




class ProjectManagerAgent:
    """
    Autonomous project management system with multiple specialized sub-agents
    """
    
    def __init__(self):
        self.task_planner = TaskPlanningAgent()
        self.resource_allocator = ResourceAllocationAgent()
        self.progress_tracker = ProgressTrackingAgent()
        self.risk_analyzer = RiskAnalysisAgent()
        self.communicator = TeamCommunicationAgent()
        
    async def manage_project(self, project_requirements: dict):
        # 1. Break down project into tasks
        tasks = await self.task_planner.decompose_project(project_requirements)
        
        # 2. Estimate effort and dependencies
        task_graph = await self.task_planner.create_dependency_graph(tasks)
        
        # 3. Allocate resources
        assignments = await self.resource_allocator.assign_tasks(
            task_graph, 
            self.get_team_availability()
        )
        
        # 4. Create timeline
        schedule = await self.create_gantt_chart(assignments)
        
        # 5. Monitor and adjust
        await self.continuous_monitoring(schedule)



Deliverables

  • 📋 Automated task breakdown (WBS)

  • 👥 Intelligent resource allocation

  • 📅 Dynamic Gantt charts

  • 🚨 Risk assessment reports

  • 📧 Automated status updates

  • 🔄 Sprint planning assistance




Project 4: Code Review & Refactoring Agent


Overview

An intelligent code analysis system that reviews code, suggests improvements, identifies bugs, and can automatically refactor code following best practices.


Sample Implementation




class CodeReviewAgent:
    def __init__(self):
        self.static_analyzer = StaticCodeAnalyzer()
        self.pattern_detector = PatternDetector()
        self.refactorer = RefactoringAgent()
        self.test_generator = TestGeneratorAgent()
        
    async def review_code(self, code: str, language: str):
        review_result = {
            'issues': [],
            'suggestions': [],
            'refactored_code': None,
            'test_cases': []
        }
        
        # 1. Static analysis
        issues = self.static_analyzer.find_issues(code, language)
        review_result['issues'] = issues
        
        # 2. Pattern detection (code smells, anti-patterns)
        patterns = self.pattern_detector.detect(code)
        
        # 3. Generate improvement suggestions
        suggestions = await self.generate_suggestions(patterns)
        review_result['suggestions'] = suggestions
        
        # 4. Auto-refactor if requested
        if self.should_refactor(issues, patterns):
            refactored = await self.refactorer.refactor(code, suggestions)
            review_result['refactored_code'] = refactored
        
        # 5. Generate test cases
        tests = await self.test_generator.create_tests(code)
        review_result['test_cases'] = tests
        
        return review_result




Features

  • 🐛 Bug detection and security vulnerability scanning

  • 🎨 Code style and formatting suggestions

  • ♻️ Automatic refactoring capabilities

  • 🧪 Test case generation

  • 📊 Code quality metrics

  • 💡 Best practice recommendations




Project 5: Financial Analysis & Trading Agent


Overview

An autonomous trading system that analyzes market data, news sentiment, and technical indicators to make informed trading decisions.


Architecture




class TradingAgent:
    def __init__(self, config: TradingConfig):
        self.market_analyzer = MarketAnalysisAgent()
        self.news_monitor = NewssentimentAgent()
        self.technical_analyst = TechnicalAnalysisAgent()
        self.risk_manager = RiskManagementAgent()
        self.executor = TradeExecutionAgent()
        self.portfolio_manager = PortfolioAgent()
        
    async def analyze_and_trade(self):
        while self.is_market_open():
            # 1. Gather market data
            market_data = await self.market_analyzer.get_current_data()
            
            # 2. Analyze news sentiment
            news_sentiment = await self.news_monitor.analyze_latest()
            
            # 3. Technical analysis
            signals = await self.technical_analyst.generate_signals(market_data)
            
            # 4. Risk assessment
            risk_score = self.risk_manager.evaluate_position(
                signals, 
                self.portfolio_manager.get_current_positions()
            )
            
            # 5. Make decision
            decision = await self.make_trading_decision(
                signals, news_sentiment, risk_score
            )
            
            # 6. Execute if appropriate
            if decision.should_trade:
                await self.executor.place_order(decision)




Capabilities

  • 📈 Real-time market data analysis

  • 📰 News sentiment analysis

  • 📊 Technical indicator calculation

  • ⚖️ Risk management and position sizing

  • 🔄 Automated order execution

  • 📑 Performance reporting





🔍 Project 6: Intelligent Document Processing Pipeline


Overview

An agent system that automatically processes various document types, extracts information, validates data, and populates databases or generates reports.


Implementation




class DocumentProcessingPipeline:
    def __init__(self):
        self.classifier = DocumentClassifier()
        self.ocr_agent = OCRAgent()
        self.extractor = InformationExtractor()
        self.validator = DataValidator()
        self.transformer = DataTransformer()
        self.storage = StorageAgent()
        
    async def process_document(self, document_path: str):
        # 1. Classify document type
        doc_type = await self.classifier.classify(document_path)
        
        # 2. Extract text (OCR if needed)
        raw_text = await self.ocr_agent.extract_text(document_path)
        
        # 3. Extract structured information
        extracted_data = await self.extractor.extract(
            raw_text, 
            doc_type,
            self.get_extraction_schema(doc_type)
        )
        
        # 4. Validate extracted data
        validated_data = await self.validator.validate(
            extracted_data,
            self.get_validation_rules(doc_type)
        )
        
        # 5. Transform to target format
        transformed_data = self.transformer.transform(
            validated_data,
            target_format='database'
        )
        
        # 6. Store or output
        result = await self.storage.save(transformed_data)
        
        return {
            'status': 'success',
            'document_type': doc_type,
            'extracted_fields': len(extracted_data),
            'storage_location': result.location
        }



Features

  • 📄 Multi-format support (PDF, Images, Word, Excel)

  • 🔤 OCR with error correction

  • 🎯 Named entity recognition

  • ✅ Data validation and quality checks

  • 🔄 Format transformation

  • 💾 Automatic database population




🎮 Project 7: Game-Playing AI Agent (Chess/Go/Poker)


Overview

An advanced game-playing agent using Monte Carlo Tree Search, neural networks, and reinforcement learning.


Core Algorithm




class GamePlayingAgent:
    def __init__(self, game_type: str):
        self.game = GameEnvironment(game_type)
        self.mcts = MonteCarloTreeSearch()
        self.evaluator = NeuralNetworkEvaluator()
        self.opening_book = OpeningDatabase()
        self.endgame_tables = EndgameTablebase()
        
    async def make_move(self, game_state: GameState):
        # 1. Check opening book
        if self.is_opening(game_state):
            return self.opening_book.get_move(game_state)
        
        # 2. Check endgame database
        if self.is_endgame(game_state):
            return self.endgame_tables.get_best_move(game_state)
        
        # 3. Use MCTS with neural network evaluation
        root = MCTSNode(game_state)
        
        for _ in range(self.num_simulations):
            node = root
            
            # Selection
            while node.is_fully_expanded() and not node.is_terminal():
                node = node.select_child(self.uct_constant)
            
            # Expansion
            if not node.is_terminal():
                node = node.expand()
            
            # Evaluation
            value = await self.evaluator.evaluate(node.state)
            
            # Backpropagation
            node.backpropagate(value)
        
        return root.get_best_move()







🏥 Project 8: Medical Diagnosis Assistant


Overview

An AI system that assists in medical diagnosis by analyzing symptoms, medical history, and test results.


Implementation




class MedicalDiagnosisAgent:
    def __init__(self):
        self.symptom_analyzer = SymptomAnalyzer()
        self.medical_kb = MedicalKnowledgeBase()
        self.differential_diagnosis = DifferentialDiagnosisEngine()
        self.test_recommender = TestRecommendationAgent()
        self.risk_assessor = RiskAssessmentAgent()
        
    async def diagnose(self, patient_data: dict):
        # 1. Analyze symptoms
        symptoms = self.symptom_analyzer.parse(patient_data['symptoms'])
        
        # 2. Generate differential diagnosis
        possible_conditions = await self.differential_diagnosis.generate(
            symptoms,
            patient_data['history'],
            patient_data['demographics']
        )
        
        # 3. Rank by probability
        ranked_conditions = self.rank_conditions(possible_conditions)
        
        # 4. Recommend tests
        recommended_tests = await self.test_recommender.suggest(
            ranked_conditions,
            patient_data
        )
        
        # 5. Risk assessment
        risk_factors = self.risk_assessor.evaluate(patient_data)
        
        return {
            'differential_diagnosis': ranked_conditions[:5],
            'recommended_tests': recommended_tests,
            'risk_factors': risk_factors,
            'disclaimer': 'For educational purposes only. Consult healthcare provider.'
        }





🚗 Project 9: Autonomous Vehicle Decision System


Overview

A multi-agent system for autonomous vehicle decision-making, including perception, planning, and control.


Architecture




class AutonomousVehicleAgent:
    def __init__(self):
        self.perception = PerceptionAgent()
        self.localization = LocalizationAgent()
        self.path_planner = PathPlanningAgent()
        self.behavior_planner = BehaviorPlanningAgent()
        self.controller = VehicleControlAgent()
        self.safety_monitor = SafetyMonitorAgent()
        
    async def drive(self, sensor_data: SensorData):
        # 1. Perceive environment
        scene = await self.perception.process(sensor_data)
        
        # 2. Localize vehicle
        position = self.localization.update(sensor_data.gps, scene)
        
        # 3. Plan behavior (lane change, stop, etc.)
        behavior = await self.behavior_planner.decide(scene, position)
        
        # 4. Plan path
        trajectory = await self.path_planner.plan(
            position,
            behavior.target,
            scene.obstacles
        )
        
        # 5. Generate control commands
        controls = self.controller.compute(trajectory, position)
        
        # 6. Safety check
        safe_controls = self.safety_monitor.verify(controls, scene)
        
        return safe_controls





📝 Project 10: Content Creation & SEO Optimization Agent


Overview

An AI system that generates high-quality content and optimizes it for search engines.


Implementation



class ContentCreationAgent:
    def __init__(self):
        self.topic_researcher = TopicResearchAgent()
        self.content_planner = ContentPlanningAgent()
        self.writer = WritingAgent()
        self.seo_optimizer = SEOOptimizationAgent()
        self.image_generator = ImageGenerationAgent()
        self.fact_checker = FactCheckingAgent()
        
    async def create_article(self, topic: str, keywords: list):
        # 1. Research topic
        research = await self.topic_researcher.research(topic)
        
        # 2. Plan content structure
        outline = await self.content_planner.create_outline(
            topic,
            research,
            target_word_count=2000
        )
        
        # 3. Generate content
        draft = await self.writer.write(outline, research)
        
        # 4. SEO optimization
        optimized = await self.seo_optimizer.optimize(
            draft,
            keywords,
            {
                'keyword_density': 0.02,
                'readability_score': 60,
                'meta_description': True,
                'headers': True
            }
        )
        
        # 5. Fact checking
        verified = await self.fact_checker.verify(optimized)
        
        # 6. Generate images
        images = await self.image_generator.create_images(
            optimized,
            style='blog_post'
        )
        
        return {
            'content': verified,
            'images': images,
            'seo_score': self.seo_optimizer.score(verified),
            'readability': self.calculate_readability(verified)
        }







How Codersarts Can Help You Build These Projects


Our Expertise Includes:

  • Complete Implementation - Full code with documentation

  • Custom Modifications - Adapt projects to your requirements

  • Deployment Support - Help with hosting and scaling

  • Testing & Debugging - Comprehensive test suites

  • Performance Optimization - Make agents faster and efficient

  • Integration Assistance - Connect with existing systems



Technology Stack We Cover:

  • Frameworks: LangChain, AutoGPT, CrewAI, AutoGen, BabyAGI

  • LLMs: OpenAI GPT-4, Claude, Gemini, Llama, Mistral

  • Vector DBs: Pinecone, Weaviate, Chroma, Qdrant

  • Deployment: Docker, Kubernetes, AWS, GCP, Azure

  • APIs: REST, GraphQL, WebSocket, gRPC



📞 Get Your Project Started Today!

Response Time: Within 1 hour


These sample projects demonstrate the breadth and depth of Agentic AI applications. Each can be customized for academic assignments or production deployments. Contact Codersarts for implementation support!

Comments


bottom of page