
P09 Patient Record System
Programming II (CS300) Spring 2020

Pair Programming: NOT ALLOWED
Due: 9:59PM on April 15th

P09 Patient Record System

Overview

This assignment involves the implementation of a simple Patient Record System using Binary
Search Trees (BST). A patient record system is usually located within a health care provider
setting. It is mainly dedicated to collecting, storing, retrieving, and making available clinical
information important to the delivery of patient care. Our BST will store a set of patient
records where the lookup key information is the date of birth of the patient. You are going
to learn how BSTs can be used to facilitate insertion and retrieval operations to and from a
collection of ordered elements, in an easy and elegant way.

Learning Objectives

The goals of this assignment include:

• Implement common Binary Search Tree (BST) operations.

• Gain more Practice in recursive problem-solving.

• Gain more experience with developing unit tests.

Grading Rubric

5 points Pre-Assignment Quiz: The P9 pre-assignment quiz is accessible through
Canvas before having access to this specification by 11:59PM on Sunday
04/12/2020. Access to the pre-assignment quiz will be unavailable passing
its deadline.

15 points Immediate Automated Tests: Upon submission of your assignment
to Gradescope, you will receive feedback from automated grading tests
about whether specific parts of your submission conform to this write-up
specification. If these tests detect problems in your code, they will attempt to
give you some feedback about the kind of defect that they noticed. Note that
passing all of these tests does NOT mean your program is otherwise correct.
To become more confident in this, you should run additional tests of your own.

30 points Manual Grading and Supplemental Automated Tests: When your final
grade feedback appears on Gradescope, it will include the feedback from these
additional automated grading tests, as well as feedback from human graders
who review the code in your submission by hand.

c©2020 AYARI Ben Hadj Kacem, Dahl, and LeGault - University of Wisconsin - Madison.

https://www.gradescope.com/
https://www.gradescope.com/

Assignment Requirements and Reminders

• DO NOT submit the provided PatientRecord.java and PatientRecordNode.java

source files on Gradescope and DO NOT make any change to their implementations.

• You ARE NOT allowed to add any additional import statements to the provided source
files. In particular, you are not allowed to import java.util.List, or java.util.ArrayList,
or java.util.Arrays classes.

• You ARE NOT allowed to add any fields either instance or static, and any public
methods either static or instance to your PatientRecordTree class.

• You CAN define local variables that you may need to implement the methods defined
in this program.

• You CAN define private methods to help implement the different public methods
defined in this programming assignment, if needed.

• ALL your test methods MUST be implemented in your PatientRecordTreeTester

class.

• In addition to the required test methods, we HIGHLY recommend (not require) that
you develop your additional own unit tests (public static methods that return a
boolean).

• Ensure that your code for every assignment is styled in conformance to CS300 Course
Style Guide.

1 Getting Started

Start by creating a new Java Project in eclipse. You may call it P09 Patient Record System,
for instance or any other name at your convenience. As the previous assignments, make sure
that your new project uses Java 11, by setting the “Use an execution environment JRE:” drop
down setting to “JavaSE-11.0.X” within the new Java Project dialog box. Then, download
and add these provided PatientRecord.java, and PatientRecordNode.java source files to your
project.

Read carefully through the provided source codes details. The PatientRecord class represents
a patient’s record in our Patient Record System. The patient record should be the principal
repository for information concerning a patient’s health care. For simplicity, we consider only
two data fields in that class (the name of the patient and their date of birth). We do not
consider the information related to the patient healthcare and clinical information. Notice
carefully that the instance field representing the date of birth of the patient is final. This
means that once initialized in the constructor, you cannot change it. We are going to use

2

https://www.gradescope.com/
https://canvas.wisc.edu/courses/190363/pages/course-style-guide
https://canvas.wisc.edu/courses/190363/pages/course-style-guide
http://cs300-www.cs.wisc.edu/wp/wp-content/uploads/2020/04/p09files/PatientRecord.java
http://cs300-www.cs.wisc.edu/wp/wp-content/uploads/2020/04/p09files/PatientRecordNode.java

this field as lookup key in our Patient Record System. Notice also that the PatientRecord

class implements the java.util.Comparable interface. You can call the instance method
.compareTo()) to compare two patient records with respect to their DATE OF BIRTH
instance fields.

The provided PatientRecordNode class models the binary nodes which will be used to build
and implement our Binary Search Tree (BST) called PatientRecordTree. The specification
of this class is provided in the following section.

2 PatientRecordTree and PatientRecordTreeTester Classes

We provide you in the following with the templates for the PatientRecordTree and
PatientRecordTreeTester classes. Download those two files and add them to your project.
Notice that we added default return statements to the incomplete methods to simply let the
code compile. You are going to complete the implementation of all the methods defined in
these classes and including the TODO tag with respect to the details provided in their javadoc
method headers. Make sure to remove the TODO tags once you complete the
implementation of each method.

Recall that you ARE NOT allowed to add any additional fields either instance or static fields
to the PatientRecordTree. Besides, NO additional public methods must be added to this
class. Read carefully all the details provided in the javadoc method headers. If a method is
described to be a recursive helper method, you are not allowed to implement it using iteration
(for or while loops). They MUST be designed and implemented using recursion.

Note that even though it is recommended to declare all the helper methods to be private, we
set some of them to be public so that we can call them from our automated test methods.

You can compare two PatientRecord objects by calling the PatientRecord.compareTo()

method with accordance to its specification. The provided implementation of that method
relies on the java.util.Date.compareTo() method. PatientRecords with duplicate dates of
birth are not allowed in this system. Note also that in our PatientRecordTree binary search
tree, the increasing order of patient records goes from the oldest to the youngest patient.
All the records of patients older than any parent must be in the left subtree rooted at its
left child. Whereas, all the records of patients younger than any parent must be in the right
subtree rooted at its right child.

Finally, we highlight that you are responsible for testing thoroughly your implementation
of the PatientRecordTree public methods. You have to define and implement at least the
FIVE unit test methods defined in the PatientRecordTreeTester class. Make sure to test
every method with at least 3 different scenarios. Hints are provided in the provided javadocs
method headers.

We note also that you are not required to worry if the user tries to add a patient record with
a date of birth projected in the future or with a very old date of birth.

3

http://cs300-www.cs.wisc.edu/wp/wp-content/uploads/2020/04/p09files/PatientRecordTree.java
http://cs300-www.cs.wisc.edu/wp/wp-content/uploads/2020/04/p09files/PatientRecordTreeTester.java
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Date.html#compareTo(java.util.Date)

Illustrative Example

In order to provide you with a better understanding on how to use the implemented classes,
we provide in the following an example of source code and its expected output.

PatientRecordTree bst = new PatientRecordTree();

System.out.println("Size: " + bst.size() + " Height: " + bst.height() + " Contents:");

System.out.println(bst);

bst.addPatientRecord(new PatientRecord("Norah", "11/23/1985"));

bst.addPatientRecord(new PatientRecord("George", "5/27/1943"));

System.out.println("***");

System.out.println("Size: " + bst.size() + " Height: " + bst.height() + " Contents:");

System.out.println(bst);

bst.addPatientRecord(new PatientRecord("Adam", "8/12/1972"));

System.out.println("***");

System.out.println("Size: " + bst.size() + " Height: " + bst.height() + " Contents:");

System.out.println(bst);

System.out.println("Oldest patient: " + bst.getRecordOfOldestPatient());

System.out.println("Youngest patient: " + bst.getRecordOfYoungestPatient());

bst.addPatientRecord(new PatientRecord("William", "6/4/1998"));

bst.addPatientRecord(new PatientRecord("Sarah", "1/2/1945"));

System.out.println("***");

System.out.println("Size: " + bst.size() + " Height: " + bst.height() + " Contents:");

System.out.println(bst);

System.out.println("Oldest patient: " + bst.getRecordOfOldestPatient());

System.out.println("Youngest patient: " + bst.getRecordOfYoungestPatient());

bst.addPatientRecord(new PatientRecord("Andrew", "4/20/2019"));

bst.addPatientRecord(new PatientRecord("Tom", "1/2/1935"));

bst.addPatientRecord(new PatientRecord("Sam", "9/12/2003"));

bst.addPatientRecord(new PatientRecord("Emily", "2/28/2020"));

System.out.println("***");

System.out.println("Size: " + bst.size() + " Height: " + bst.height() + " Contents:");

System.out.println(bst);

System.out.println("Oldest patient: " + bst.getRecordOfOldestPatient());

System.out.println("Youngest patient: " + bst.getRecordOfYoungestPatient());

System.out.println("***");

try {

System.out.println("Lookup query: search for the patient who’s born on 9/12/2003.");

System.out.println("Search Results: " + bst.lookup("9/12/2003"));

System.out.println("Lookup query: search for the patient who’s born on : 1/10/2000.");

System.out.println("Search Results: " + bst.lookup("1/10/2000"));

} catch (NoSuchElementException e) {

System.out.println(e.getMessage());

}

4

Expected output:
Size: 0 Height: 0 Contents:

Size: 2 Height: 2 Contents:

George(5/27/1943)

Norah(11/23/1985)

Size: 3 Height: 3 Contents:

George(5/27/1943)

Adam(8/12/1972)

Norah(11/23/1985)

Oldest patient: George(5/27/1943)

Youngest patient: Norah(11/23/1985)

Size: 5 Height: 4 Contents:

George(5/27/1943)

Sarah(1/2/1945)

Adam(8/12/1972)

Norah(11/23/1985)

William(6/4/1998)

Oldest patient: George(5/27/1943)

Youngest patient: William(6/4/1998)

Size: 9 Height: 4 Contents:

Tom(1/2/1935)

George(5/27/1943)

Sarah(1/2/1945)

Adam(8/12/1972)

Norah(11/23/1985)

William(6/4/1998)

Sam(9/12/2003)

Andrew(4/20/2019)

Emily(2/28/2020)

Oldest patient: Tom(1/2/1935)

Youngest patient: Emily(2/28/2020)

Lookup query: search for the patient who’s born on 9/12/2003.

Search Results: Sam(9/12/2003)

Lookup query: search for the patient who’s born on : 1/10/2000.

No search results.

5

3 Assignment Submission

Congratulations on finishing this CS300 assignment! After verifying that your work
is correct, and written clearly in a style that is consistent with the CS300 Course Style Guide,
you should submit your final work through gradescope.com. The only 2 files that you must
submit include: PatientRecordTree.java and PatientRecordTreeTester.java. Your
score for this assignment will be based on your “active” submission made prior to the
hard deadline of Due: 9:59PM on April 15th. The second portion of your grade for this
assignment will be determined by running that same submission against additional offline
automated grading tests after the submission deadline. Finally, the third portion of your
grade for your submission will be determined by humans looking for organization, clarity,
commenting, and adherence to the CS300 Course Style Guide.

c©Copyright: This write-up is a copyright programming assignment. It belongs to UW-Madison. This
document should not be shared publicly beyond the CS300 instructors, CS300 Teaching Assistants, and
CS300 Spring 2020 fellow students. Students are NOT also allowed to share the source code of their CS300
projects on any public site including github, bitbucket, etc.

6

https://canvas.wisc.edu/courses/190363/pages/course-style-guide
gradescope.com
https://canvas.wisc.edu/courses/190363/pages/course-style-guide

	Getting Started
	PatientRecordTree and PatientRecordTreeTester Classes
	Assignment Submission

